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illusion magnitude was enhanced when the test lines were in a depth plane
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a significant role in determining the magnitude of the spatial distortion
typified by the Ponzo illusion. Further, the asymmetrical nature of the
effect of depth position, which has been observed in other investigations,
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I1

Fffect of Depth Separation on the Ponzo Illusion

The perceived length of contours can be altered by their placement

within the arms of an acute angle, as illustrated in Figure 1. Both of

the enclosed parallel white lines are physically equal in length yet

the one closer to the apex of the angle appears longer than its partner.

As Figure 1 suggests, this apparent change in length can occur in many

natural situations as, for example, on an aircraft runway, or in general,

whenever linear perspective cues are present. When this change, or dis-

tortion, in length is studied in the laboratory, it is often referred to

as the Ponzo illusion and regarded as one of a large class of two-

dimensional visual geometric illusions that have interested psychologists

for many years.

For the research described in this report the Ponzo illusion serves

as a convenient stimulus configuration that can be used to explore the

following experimental question: Would the magnitude of the illusion be

altered if the arms of the acute angle were in a depth plane different

from that of the parallel lines? The answer is sought by the general

research program of which this report is a part. The objective is to

determine if apparent depth plays an important role in governing the

various kinds of interactions among snatially adjacent contours that

occur when they occupy the same depth plane. In an earlier investi-

gation of the threshold elevating (i.e., destructive) interaction be-

tween test and mask stimuli found in metacontrast masking, depth position

proved to be a very significant factor. Whereas masking diminished (i.e.,

test is more detectable) when the test form appeared in a depth plane in

front of the mask, a reversal of depth positions augmented masking; this

relationship has been termed the "front effect" (Fox F Lehmkuhle, 1978;
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Lehmkuhle & Fox, 1980). To determine if this effect of apparent depth was

confined to the transient, threshold level stimuli attendant to visual mask-

ing, Fox and Patterson (1980) examined the effect of depth position on later-

al interference, the nature of which involves an impairment in visibility of

closely spaced, suprathreshold contours. They found that depth position had

the same effect on lateral interference as it had on visual masking.

The purpose of the present study was to determine if depth position also

influenced suprathreshold interactions that are not destructive, but rather

act on some other stimulus dimension such as the change in apparent length

integral to the Ponzo illusion. Before turning directly to the description of

that study, however, consideration should be given to several previous studies

that have examined the effect of depth position on the Ponzo illusion.

Green, Lawson, and Godek (1972) presented the illusion as a stereogram

consisting of discrete contours. The authors found that illusion magnitude

diminished when the test lines, with crossed disparity, appeared in depth

planes in front of the inducing triangle, yet increased with uncrossed dis-

parity that placed the lines in a depth plane behind the triangle. They

attributed this asymmetrical effect of depth position on illusion magnitude

to changes in the apparent size of the test lines induced by size constancy.

According to this explanation, when the lines were presented in crossed dis-

parity they appeared smaller, thereby increasing the apparent spacing between

them and the edges of the triangle. Conversely, when the lines were presented

in uncrossed disparity they appeared larger, thereby decreasing the apparent

spacing between them and the edges of the triangle.

The asymmetrical effect of depth position found by Green, Lawson and

Godek is not consistent with the adjacency principle developed by Gogel

(e.g., Gogel, 1978), which would posit a symmetrical decrease in illusion
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magnitude as the difference in depth position between interacting ele-

ments increases. This departure from the adjacency principle led Gogel

to examine the effect of depth position on the Ponzo illusion under

several conditions in which depth was manipulated by combining absolute

distance cues with stereoscopic depth cues (Gogel, 1975). In one con-

dition, in which a single triangle was used, the effect of depth position

on illusion magnitude was similar to the relationship observed by Green

et al. (1972). That is, illusion magnitude declined when the test lines

were in a depth plane in front of the triangle, but it did not decline

when the test lines were in a depth plane behind that of the triangle.

In a second condition, two inducing triangles were located at different

depth planes with their apexes oriented in opposite directions. This

yielded a more complex pattern of results which Gogel interpreted as

being consistent with the adjacency principle. No ready explanation,

however, was available for the failure of the results to conform to the

adjacency principle when a single triangle was used. Gogel suggested

several possibilities, including differential effects of attention,

changes in apparent size of the figures induced by size constancy, and

conflicting information about depth induced by the interaction of abso-

lute and relative depth cues.

In a brief report, Hennessey and Leibowitz (1972) used a method

of physical separation (lines on a glass sheet) to locate the test

lines of the Ponzo illusion at a depth position in front of the tri-

angle. The authors found that illusion magnitude decreased under con-

ditions of depth separation relative to the case where the test lines

and triangle were nositioned in the same depth plane.

In his book, which summarizes research with random-element
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stereograms, Julesz (1971) presents a static random-element stereogram

of the Ponzo illusion in which the triangle and test line are separated

in depth, lie makes the anecdotal observation that the depth separation

appears to change illusion magnitude. But, a more rigorous check on

this observation, made in this laboratory, did not yield general agree-

ment. Ten observers were required to make forced-choice judgments as

to direction of illusion magnitude--five reported an increase, while

the remainder reported a decrease, in magnitude.

Taken together, it is clear that the results of these studies are

rather equivocal. A major factor responsible for the disagreements is

the difficulty encountered in manipulating the apparent depth of stimu-

li without at the same time introducing confounding changes in proxi-

mal stimulation. Typically, only a limited range of depth positions

can be varied, and it is very difficult to compensate for changes in

apparent size that covary with changes in apparent depth. These restric-

tions on experimental manipulation have, in general, impeded research

concerning the effect of depth position on stimulus interaction.

To overcome these difficulties this research program has capital-

ized upon recent advances in the techniques available for the generation

of dynamic random-element stereograms. Random-element stereograms,

developed by Julesz (1960), are matrices of random dots in which the

retinal disparity that gives rise to stereoscopic forms is camouflaged

within the dot structure. Mhen viewed monocularly, these stereograms

appear to be random collections of dots without identifiable shapes.

But when viewed under stereoscopic conditions, clearcut stereoscopic

forms with distinct edges can be seen. In a functional sense, the

forms bypass or skip more peripheral stages in the visual system and



I

arrive at the central stage responsible for stereopsis. Even though

the stereoscopic forms do no exist as physical luminance gradients

impinging on the retina, they can induce illusions, aftereffects, and

other perceptual phenomena similar to those induced by physical con-

tours. The great advantage of such stereograms is that large changes

in apparent depth can be made without introducing changes in proximal

stimulation.

The utility of random-element stereograms has been greatly en-

hanced by recent technical develonments that have made possible the

dynamic generation of stereograms, wherein all parameters of the

stereoscopic display can be changed instantaneously. With these

dynamic stereograms, stereoscopic forms can be moved about in stereo-

sconic space in X-Y-Z coordinates, and the configuration of the forms

can be quickly altered without introducing monocular cues. A system

for generating dynamic random-element stereograms has been developed

at Vanderbilt and used in a variety of research applications, inclu-

ding investigations of the effect of depth position on contour inter-

action (e.g., Fox & Lehmkuhle, 1978; Lehmkuhle & Fox, 1980; Fox &

Patterson, 199n). The system was used in this experiment to gener-

ate the inducing triangle and test lines that comprise the Ponzo il-

lusion.

Method

Observers

Twelve persons ( 1 male and 11 females) participated in the study.

All 12 had no knowledge of the hypothesis under test, but possessed

good stereopsis and had recent training in perceiving stereoscopic

contours formed from dynamic random-element stereograms.
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Apparatus

The dynamic stereograms employed in this study are similar con-

ceptually to the static stereograms developed by Julesz (1971). As

shown in Figure 2, each monocular view of a static random-element

stereogram consists of a random-dot matrix of about 10,000 dots. The

scheme employed with these stereograms for producing the retinal dis-

parity essential for the induction of stereonsis is depicted in

Figure 3. A subset of dots within a center square area of one dot

matrix is displaced, or shifted, horizontally by one column realtive

to corresponding dots in the other matrix. It is this lateral dis-

placement which results in the production of retinal disparity between

those elements in the shifted submatrix and corresponding elements in

the other matrix.

Recause the laterally shifted submatrix is camouflaged by a large

number of surrounding elements, it cannot be seen under nonstereoscopic

viewing conditions. Rut under appropriate viewing conditions, in which

each random dot matrix stimulates a separate eye, the binocular visual

system, in a sense, detects the presence o-' retinal disparity. For ex-

ample, under these conditions the form depicted in Figure 3 would appear

as a solid textured square standing out in depth.

There is, however, one important limitation with regard to the

method of producing retinal disparity outlined above. With respect to

the static stereograms, the common practice has been to fill the gap

which has been created on one side of the displaced matrix with non-

disparate elements (cells labeled X & Y in Figure 3) originating rom

the other side of the matrix, i.e., those which had just been covered

by the displaced matrix. But as Bridgman (1964) and Gulick and Lawson

7
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Figure 2. The two monocular patterns of a typical staticrandom-element stereogram. When each pattern stimu-
lates a separate eye, a stereoscopic form can beperceived (ater Julesz, 1971).
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Figure 3. The displacement process for the generation of
static random-element stereograms (after Julesz,
1971).
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(1976) point out, this technique produces columns of elements in one

dot matrix unpaired with those in the other dot matrix. Consequently,

these columns are seen as part of the background rather than as part

of the figure, an outcome which results in a decrease in size of the

figure as disparity is increased. This reduction in size, moreover,

is not due to any apparent reduction owing to size constancy, but

rather a result of the physical characteristics of the static method

of stereogram generation. This problem of correlation between size

and disparity found in the static method of generation is avoided in

the present method of dynamic generation; the size and shape of the

stereoscopic figures are independent of their disparity.

Only a brief overview of the dynamic random-element stereogram

system developed at Vanderbilt will be presented here. More complete

descriptions of this system are given in Fox and Lehmkuhle (1978),

Lehmkuhle and Fox (1980), and Shetty, Brodersen, and Fox (1979). The

system used in the present investigation is composed of three compo-

nents: the display device, the electronic generation unit, and the

optical programnming device. The interrelationship of these three units

is shown in Figure 4; their description is given below.

The display device is a color television receiver so modified that

the red and green guns can be electronically controlled at the level of

the video amplifiers; the blue gun is disabled. The red and green guns

are modulated in raster-scan mode at standard video frequencies, and

produce random-dot matrices composed of red and green dots. Dot patterns

are produced by turning the guns on and off as they sweep the raster.

Stereogram construction is accomplished via the second unit, the

electronic generation system. This system is composed of four subsystems,

10
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each of which constructs some portion of the stereogram. As the final

output all portions are presented simultaneously. The functions of

these four si bsystems are: (a) The undelayed dot generation system

generates random matrices of red and green dots without disparity;

(b) the size/shape system specifies the X/Y coordinates of the stereo-

scopic form to be displayed by blanking the appropriate dots generated

by the undelayed dot generation system; (c) the dot delay system pro-

duces a slight delay in the output of one or the other of the electronic

guns, which results in a difference in spatial position between red and

green dots. This spatial displacement produces the retinal disparity

essential for stereopsis. Dichoptic stimulation is achieved by use of

the well-known anaglyph technique, in which appropriately matched red

and green filters are worn by the observers. Note that since the dots

that are delayed are those which will fill the area specified by the

size/shape system, the disparity is produced between only these delayed

dots and the undelayed dots from the other gun that also fill the same

area; (d) the gap filling system provides dots without disparity which

precisely fill the gap produced by the delay. The output of these sub-

systems are combined by ANDing logic operations, and when simultaneously

displayed on the television screen, the stereoscopic form can be seen

without the presence of monocular cues.

In this dynamic method of generation, all dots are replaced in both

matrices at either the field rate of 60 times per second, or the frame

rate of 30 times per second of the video receiver. Replacement of dots

in this fashion permits the configuration of the stereoscopic form to be

continuously manipulated in X, Y, and Z positions without the intro-

duction of monocular cues. Dot replacement in this way also produces

12



apparent motion of the dots, not unlike the static seen on an untuned

TV channel. This apparent motion, however, does not impair the visi-

bility of the stereoscopic form.

The electronic generation unit also nrovides controls for instan-

taneously changing the magnitude and direction of disparity. But this

unit by itself allows only for the generation of rectilinear stereo-

scopic forms.

The third unit of this system, the optical programming device, makes

it possible to present virtually any stimulus configuration as a stere-

scopic form. The principle of the programming system is similar to that

of a flying spot scanner. The scan of a modified black and white video

camera is synchronized with the sweep of the video receiver. The camera

controls the size/shape system by specifying the area that is to receive

the delayed dots. This is accomplished by having the analog voltage

emitted by the camera vary as it sweeps over contours varying in lumi-

nance. Thus, any black and white two-dimensional configuration scanned

by the camera can be converted into its corresponding stereoscopic counter-

part. The number of cameras employed with this system determines the

number of stimulus configurations that can be displayed simultaneously,

with the parameters of the stereoscopic configuration encoded by one

camera manipulated independently of those encoded by another camera. In

the present study, two video cameras were employed.

The stimuli employed in the present study consisted of two hori-

zontal lines of equal physical length (e.g., the test stimuli) and a

triangle; these stimuli were achromatic two-dimensional pictures moun-

ted on a wall. Of the two modified video cameras used in this study, one

scanned the image of the test lines while the other scanned the image

of the triangle (see Figure 5). Note that the cameras only provide
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information concerning the position of the figures along the X- and Y-

axes of the display. The depth positions of the stereoscopic counter-

parts of the test lines and triangle are controlled by the stereogram

generation unit. That unit, in turn, addresses the display, which is

a color TV receiver of the table model variety.

Stimuli

The dimensions of the stimuli employed in this study, which were

arranged in the well-known Ponzo configuration, are shown in Figure 6.

Note that the two legs of the triangle formed an angle of 50 deg, with

the apex pointing upwards; at no time did the triangle overlap any

portion of the test stimuli.

The test lines under all conditions remained in the same depth

plane, which corresponded to a crossed disparity of 22'0". The in-

duction triangle was presented at one of five depth positions: at

depth conditions +2 and +1 corresponding to disparities of 7'20" and

14'40" respectively, the triangle was positioned in depth behind the

test stimuli (see Figure 7). At depth condition 0 corresponding to

a disparity of 22'0", the triangle occupied a depth plane equal to

that of the test stimuli. Finally, at depth conditions -I and -2

corresponding to disparities of 29'20" and 36'40" respectfully, the

triangle was positioned in depth in front of the test stimuli (see

Figure 8). These disparities were all crossed. In the control con-

dition, the test stimuli were presented in isolation. Although the

apparent size of the induction triangle could be adjusted so as to

remain constant for all depth manipulations, this adjustment was

found to be unnecessary. Forced-choice judgments which were obtained

from the 12 observers revealed that the size of the induction triangle

15
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Figure 7. Stimulus arrangement showing relative depth of test
lines (in front) and inducing triangle (Note that the
term "inducing triangle" is synonymous with induction
wedge in the figure).
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appeared equal under all depth conditions.

Procedure

The observers judged the length of one test line relative to that

of the other in the following way: One half of the participants esti-

mated the length of the lower line relative to that of the upper, with

the upper test line assigned an arbitrary length of 10 units. The other

half of the observers estimated the length of the upper line relative to

that of the lower, with the lower test line assigned an arbitrary value

of 10 units.

Both the test stimuli and triangle were continuously visible to

the observers for the entire duration of each trial. The observers

were allowed to use fractions or decimals in their estimations, taking

as long as necessary to complete each trial. The one control and five

depth conditions were randomly presented to the observers for five

trials each, making a total of 30 trials. The display was viewed by

the observers under constant conditions, such as fixed viewing dis-

tance and stable head position.

Results

Length estimations were converted to percent distortion for each

observer in the following fashion: Average length estimations obtained

under each of the five depth conditions were subtracted from the average

estimations obtained under the control condition. Each absolute differ-

ence (disregarding the sign) was then divided by the control condition

value and multiplied by 100.

Figure 9 shows the mean percent distortion for the one control and

five depth conditions. Inspection of this figure shows distortion mag-

nitude to be greater (i.e., greater length estimations for the upper

19
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Figure 9. Illusion magnitude for the control condition, in which
the test lines were presented without the inducing
triangle, and for five depth conditions in which the
test lines and inducing triangle were presented to-
gether (all stimuli were suprathreshold). For the two
front depth conditions, the test lines were seen in
depth in front of the inducing triangle, and for the
two back depth conditions, the test lines appeared in
depth behind the inducing triangle. For the zero depth
condition the test lines and triangle occupied the same
depth plane.
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test line) under the condition where the induction triangle was presented

along with the test stimuli in the same depth plane (depth condition 0),

relative to the control condition in which the test stimuli were presented

in isolation. Furthermore, relative to the equal depth condition (depth

condition 0), the magnitude of distortion was found to be asymmetrical fol-

lowing depth manipulations of the induction triangle: Distortion was found

to decrease under conditions in which the test stimuli appeared in depth in

front of the induction triangle (depth conditions +2 and +1), whereas dis-

tortion was observed to increase in the situation where the test stimuli

appeared in depth behind the induction triangle (depth condition -2). A

one-way Analysis of Variance (ANOVA) for repeated measures revealed these

differences to be significant, F(4,44) = 6.47, p <.001 (see Table 1).

A Newman-Keuls test for these means was also computed, and the results

are presented in Table 2. With regard to the main comparisons, results from

this test found that the difference in distortion magnitude between depth

condition 0, in which both the induction triangle and test lines were pre-

sented in the same depth plane, and the control condition was significant.

Furthermore, the decrement in distortion magnitude which occurred tinder depth

condition +2, in which the test lines appeared in front of the triangle, rela-

tive to depth condition 0 was also significant. However, the increase in dis-

tortion magnitude which occurred for depth condition -2, in which the test lines

appeared behind the triangle, relative to depth condition 0 was not significant.

Discussion

When both triangle and test lines occupy the same depth plane, the mag-

nitude of illusion is greater relative to that observed when the test lines

are presented without the triangle. This difference in illusion magni-

tude, which is about 15% and statistically significant, indicates that

the presence of the triangle did induce a substantial change in the

21



TABIX 1

ONE-WAY ANALYSIS OF VARIANCE S[N MARY T.ABI:

Source Sum of Squares df M.ean Ratio F-Ratio

Between
Error 5131.27 11 4-6.4-9

Depth
Conditions 4106.44 5 821. 288 8.S-5

ithin
Error 1 5393.48 55 98.0633

Total 14631.2 71 206.0"3

*p .001
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apparent length of the test lines. Further, the relative depth position

of triangle and test lines had a substantial effect on illusion magni-

tude. For the situation in which the lines were in front of the triangle

(i.e., depth condition +2), illusion magnitude is significantly reduced

relative to the case where both triangle and lines have the same depth

plane (depth condition 0). There is also a tendency for illusion magni-

tude to remain the same or to increase, albeit not statistically signifi-

cant, for the situation where the test lines appear in a depth plane be-

hind the triangle (depth conditions -1 and -2).

These results are similar to those that have been obtained in the

earlier investigations of visual masking and lateral interference

(Lehmkuhle & Fox, 1990; Fox & Patterson, 1980). These phenomena in-

volve interactions among contours which can be characterized as des-

tructive, or inhibitory, in the sense that the perceptibility of con-

tours is impaired as indexed by elevations in threshold. The present

results, however, indicate the the effect of depth position is not con-

fined to destructive interactions among contours. Rather, it can be

generalized to the kind of spatial modification, or distortion, intrinsic

to the Ponzo illusion, and presumably to other similar kinds of inter-

actions involving apparent modifications in the dimensions of stimuli.

Similarly, the asymmetrical effect of depth position, which has been

observed in previous work and termed the front effect, is also present

in these data. Accordingly, it is suggested that the front effect is

a general phenomenon not limited to the case of destructive interaction.

The presence of a front effect in this study can contribute to a

clarification of the earlier investigations of the effect of depth

position on the Ponzo illusion discussed in the introduction. Recall

24



that both Green et al. and Gogel, in his single triangle condition,

found an asymmetrical effect of depth position similar to the front

effect. But several of the hypotheses advanced by these authors to

account for the asymmetry are not applicable to the present data.

An explanation based on a change in apparent size is not possible

because such changes did not occur. A conflict between absolute

and relative depth cues could not be a contributing factor since

all depth cues were stereoscopic. An appeal to differential eye

movements, or changes in convergence, is not possible because

the observers fixated upon the test lines which remained at one

position in depth. An hypothesis based upon differences between

crossed and uncrossed disparity is not viable because for all depth

positions crossed disparity was employed, i.e., contours always

appeared in front of the display in the space between the display

and the observer.

It has been suggested, however, (Gogel, 1975; Gogel, personal

communication) that somehow attention might be a factor, with the

closer depth position of the triangle acting to attract greater

attention than the farther depth positions of the triangle. But

this idea requires further theoretical development before it can

be evaluated empirically. Further, it does not seem applicable to

situations involving briefly presented, threshold level stimuli,

such as in the case of visual masking (e.g., Lehmkuhle & Fox, 1980).

The ubiquity of the front effect suggests that it may reflect

a natural bias of the perceptual system to give greater weight to

stimuli that are closer in depth to the observer. Such a bias could

be analogous to the dominance of figure over ground. While more
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research is required to elucidate the mechanisms responsible for the

front effect, it does seem clear that it is a robust phenomenon which

plays a significant role in influencing the interactions of stimuli

in three-dimensional space.
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